243 research outputs found

    Metamaterials for Ballistic Electrons

    Get PDF
    The paper presents a metamaterial for ballistic electrons, which consists of a quantum barrier formed in a semiconductor with negative effective electron mass. This barrier is the analogue of a metamaterial for electromagnetic waves in media with negative electrical permittivity and magnetic permeability. Besides applications similar to those of optical metamaterials, a nanosized slab of a metamaterial for ballistic electrons, sandwiched between quantum wells of positive effective mass materials, reveals unexpected conduction properties, e.g. single or multiple room temperature negative differential conductance regions at very low voltages and with considerable peak-to-valley ratios, while the traversal time of ballistic electrons can be tuned to larger or smaller values than in the absence of the metamaterial slab. Thus, slow and fast electrons, analogous to slow and fast light, occur in metamaterials for ballistic electrons

    Writing Electronic Devices on Paper with Carbon Nanotube Ink

    Get PDF
    The normal paper used in any printer is among the cheapest flexible organic materials that exist. We demonstrate that we can print on paper high-frequency circuits tunable with an applied dc voltage. This is possible with the help of an ink containing functionalized carbon nanotubes and water. After the water is evaporated from the paper, the nanotubes remain steadily imprinted on paper, showing a semiconducting behaviour and tunable electrical properties

    Phase Space Formulation of Quantum Mechanics. Insight into the Measurement Problem

    Full text link
    A phase space mathematical formulation of quantum mechanical processes accompanied by and ontological interpretation is presented in an axiomatic form. The problem of quantum measurement, including that of quantum state filtering, is treated in detail. Unlike standard quantum theory both quantum and classical measuring device can be accommodated by the present approach to solve the quantum measurement problemComment: 29 pages, 4 figure

    Graphene-like metallic-on-silicon field effect transistor

    Full text link
    In this manuscript, we present a field effect transistor with a channel consisting of a two-dimensional electron gas located at the interface between an ultrathin metallic film of Ni and a p-type Si(111) substrate. We have demonstrated that the two-dimensional electron gas channel is modulated by the gate voltage. The dependence of the drain current on the drain voltage has no saturation region, similar to a field effect transistor based on graphene. However, the transport in this transistor is not ambipolar, as in graphene, but unipolar

    Microwave Inter-Connections and Switching by means of Carbon Nano-tubes

    Get PDF
    In this work, carbon nanotube (CNT) based interconnections and switches will be reviewed, discussing the possibility to use nanotubes as potential building blocks for signal routing in microwave networks. In particular, theoretical design of coplanar waveguide (CPW), micro‐strip single‐pole‐single‐throw (SPST) and single‐pole‐double‐throw (SPDT) devices has been performed to predict the electrical performances of CNT‐based RF switching configurations. Actually, by using the semiconductor‐conductor transition obtained by properly biasing the CNTs, an isolation better than 30 dB can be obtained between the ON and OFF states of the switch for very wide bandwidth applications. This happens owing to the shape deformation and consequent change in the band‐gap due to the external pressure caused by the electric field. State‐of‐art for other switching techniques based on CNTs and their use for RF nano‐interconnections is also discussed, together with current issues in measurement techniques

    Experimental determination of microwave attenuation and electrical permittivity of double-walled carbon nanotubes

    Get PDF
    The attenuation and the electrical permittivity of the double-walled carbon nanotubes (DWCNTs) were determined in the frequency range of 1–65 GHz. A micromachined coplanar waveguide transmission line supported on a Si membrane with a thickness of 1.4 ”m was filled with a mixture of DWCNTs. The propagation constants were then determined from the S parameter measurements. The DWCNTs mixture behaves like a dielectric in the range of 1–65 GHz with moderate losses and an abrupt change of the effective permittivity that is very useful for gas sensor detection. ©2006 American Institute of Physic

    Classical simulation of Quantum Entanglement using Optical Transverse Modes in Multimode Waveguides

    Full text link
    We discuss mode-entangled states based on the optical transverse modes of the optical field propagating in multi-mode waveguides, which are classical analogs of the quantum entangled states. The analogs are discussed in detail, including the violation of the Bell inequality and the correlation properties of optical pulses' group delays. The research on these analogs may be important, for it not only provides useful insights into fundamental features of quantum entanglement, but also yields new insights into quantum computation and quantum communication.Comment: RevTeX v4, 17 pages and 4 figure

    Very large phase shift of microwave signals in a 6 nm Hf x Zr 1− x O 2 ferroelectric at ±3 V

    Get PDF
    In this letter, we report for the first time very large phase shifts of microwaves in the 1–10 GHz range, in a 1 mm long gold coplanar interdigitated structure deposited over a 6 nm Hf x Zr1−x O2 ferroelectric grown directly on a high resistivity silicon substrate. The phase shift is larger than 60° at 1 GHz and 13° at 10 GHz at maximum applied DC voltages of ±3 V, which can be supplied by a simple commercial battery. In this way, we demonstrate experimentally that the new ferroelectrics based on HfO2 could play an important role in the future development of wireless communication systems for very low power applications

    Field-induced decay of quantum vacuum: visualizing pair production in a classical photonic system

    Full text link
    The phenomenon of vacuum decay, i.e. electron-positron pair production due to the instability of the quantum electrodynamics vacuum in an external field, is a remarkable prediction of Dirac theory whose experimental observation is still lacking. Here a classic wave optics analogue of vacuum decay, based on light propagation in curved waveguide superlattices, is proposed. Our photonic analogue enables a simple and experimentally-accessible visualization in space of the process of pair production as break up of an initially negative-energy Gaussian wave packet, representing an electron in the Dirac sea, under the influence of an oscillating electric field

    Coherent tunneling by adiabatic passage in an optical waveguide system

    Full text link
    We report on the first experimental demonstration of light transfer in an engineered triple-well optical waveguide structure which provides a classic analogue of Coherent Tunnelling by Adiabatic Passage (CTAP) recently proposed for coherent transport in space of neutral atoms or electrons among tunneling-coupled optical traps or quantum wells [A.D. Greentree et al., Phys. Rev. B 70, 235317 (2004); K. Eckert et al., Phys. Rev. A 70, 023606 (2004)]. The direct visualization of CTAP wavepacket dynamics enabled by our simple optical system clearly shows that in the counterintuitive passage scheme light waves tunnel between the two outer wells without appreciable excitation of the middle well.Comment: submitted for publicatio
    • 

    corecore